Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1722: 464859, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604056

RESUMO

In this study, molecularly imprinted polymers (MIPs) were prepared for the specific recognition of organophosphorus pesticides and a rapid, efficient and simple method was established for the detection of dimethoate (DIT) in food samples. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation, and Fe3O4/ZIF-8 complexes were prepared by a modified in-situ polymerization method, and then magnetic molecularly imprinted polymers (MMIPs) were prepared and synthetic route was optimized by applying density functional theory (DFT). The morphological characterization showed that the MMIPs were coarse porous spheres with an average particle size of 50 nm. The synthesized materials are highly selective for the organophosphorus pesticide dimethoate with an adsorption capacity of 461.50 mg·g-1 and are effective resistance to matrix effects. A novel method for the determination of DIT in cabbage was developed using the prepared MMIPs in combination with HPLC. The practical results showed that the method can meet the requirements for the determination of DIT in cabbage with recoveries of 85.6-121.1 % and detection limits of 0.033 µg·kg-1.


Assuntos
Brassica , Dimetoato , Limite de Detecção , Polímeros Molecularmente Impressos , Dimetoato/análise , Brassica/química , Polímeros Molecularmente Impressos/química , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Impressão Molecular/métodos , Nanopartículas de Magnetita/química , Extração em Fase Sólida/métodos , Contaminação de Alimentos/análise
2.
Chemosphere ; 357: 141953, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38614395

RESUMO

The effects of culture filtrate of Alexandrium tamarense on Prorocentrum donghaiense and Heterosigma akashiwo were investigated, including determination of algal density, photosynthesis, intracellular enzyme content and activity. The filtrate of A. tamarense had a stronger inhibitory effect on P. donghaiense than H. akashiwo, and the inhibitory effect decreased with higher temperature treatment of the filtrate. Instantaneous fluorescence (Ft) and maximum quantum yield of photosystem II (Fv/Fm) values of both kinds of target algae were reduced as exposed to the filtrate of A. tamarense, which proved that allelopathy could inhibit the normal operation of photosynthetic system. The increase of Malondialdehyde (MDA) content of the two kinds of target algae indicated that the cell membrane was seriously damaged by allelochemicals released by A. tamarense. The different responses of Superoxide Dismutase (SOD) and Catalase (CAT) activity in two kinds of target algae demonstrated the complexity and diversity of allelopathic mechanism. The filtrate of A. tamarense also influenced the metabolic function (ATPases) of P. donghaiense and H. akashiwo, and the influence on P. donghaiense was greater. Liquid-liquid extraction was used to extract and isolate allelochemicals from the filtrate of A. tamarense. It was found that only component I with molecular weight of 424.2573 and 434.2857 could inhibit the growth of P. donghaiense by HPLC-MS.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38602639

RESUMO

There are many studies on the toxic effects of single nanoparticles on microalgae; however, many types of nanoparticles are present in the ocean, and more studies on the combined toxic effects of multiple nanoparticles on microalgae are needed. The single and combined toxic effects of nCu and nSiO2 on Dunaliella salina were investigated through changes in instantaneous fluorescence rate (Ft) and antioxidant parameters during 96-h growth inhibition tests. It was found that the toxic effect of nCu on D. salina was greater than that of nSiO2, and both showed time and were dose-dependent with the greatest growth inhibition at 96 h. A total of 0.5 mg/L nCu somewhat promoted the growth of microalgae, but 4.5 and 5.5 mg/L nCu showed negative growth effects on microalgae. The Ft of D. salina was also inhibited by increasing concentrations of nanoparticles and exposure time. nCu suppressed the synthesis of TP and elevated the MDA content of D. salina, which indicated the lipid peroxidation of algal cells. The activities of SOD and CAT showed a trend of increasing and then decreasing with the increase of nCu concentration, suggesting that the enzyme activity first increased and then decreased. The toxic effect of a high concentration of nCu was reduced after the addition of nSiO2. SEM and EDS images showed that nSiO2 could adsorb nCu in seawater. nSiO2 also adsorbed Cu2+ in the cultures, thus reducing the toxic effect of nCu on D. salina to a certain extent. TEM image was used to observe the morphology of algal cells exposed to nCu.

4.
Mikrochim Acta ; 191(5): 249, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587558

RESUMO

17ß-Estradiol (E2) is the typical endocrine disruptor of steroidal estrogens and is widely used in animal husbandry and dairy processing. In the environment, even lower concentrations of E2 can cause endocrine dysfunction in organisms. Herein, we have developed a novel molecularly imprinted ratiometric fluorescent sensor based on SiO2-coated CdTe quantum dots (CdTe@SiO2) and 7-hydroxycoumarin with a post-imprint mixing strategy. The sensor selectively detected E2 in aqueous environments due to its two fluorescent signals with a self-correction function. The sensor has been successfully used for spiking a wide range of real water and milk samples. The results showed that the sensor exhibited good linearity over the concentration range 0.011-50 µg/L, obtaining satisfactory recoveries of 92.4-110.6% with precisions (RSD) < 2.5%. Moreover, this sensor obtained an ultra-low detection limit of 3.3 ng/L and a higher imprinting factor of 13.66. By using estriol (E3), as a supporting model, it was confirmed that a simple and economical ratiometric fluorescent construction strategy was provided for other hydrophobic substances.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Animais , Leite , Fluorescência , Dióxido de Silício , Telúrio , Estradiol , Corantes
5.
Mar Pollut Bull ; 198: 115780, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006871

RESUMO

As a class of persistent organic pollutants (POPs), the spatial and temporal distribution of polychlorinated biphenyls (PCBs) in seawater is important for environmental assessment. Surface water samples were collected from 35 stations during summer and 36 stations during autumn of 2020 in the Bohai Bay. The concentration, composition, distribution and sources of PCBs were analyzed to assess the ecological impact of PCBs. The average concentration of ∑18PCBs was 124.6 ng/L (range of 28.1-445.5 ng/L) in summer and 122.8 ng/L (range of 21.0-581.4 ng/L) in autumn. PCBs in surface seawater of the Bohai Bay showed high near-shore and low far-shore characteristics, indicating the serious influence of land-based sources such as port activities and river inputs. Proportion analysis showed that Tetra-PCBs and Penta-PCBs were the major constituents in most stations. It was assessed as moderate and high risk (MRQ > 0.1) by mixture risk quotient (MRQ) and concentration addition (CA) model in surface seawater of the Bohai Bay. Principal component analysis (PCA) was used to explain the sources of PCBs in the Bohai Bay. PCBs in the Bohai Bay may come from commercial PCBs and their incineration products, municipal landfills, wood and coal combustion, and industrial activities, etc.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Sedimentos Geológicos/análise , Baías , Poluentes Químicos da Água/análise , Monitoramento Ambiental , China , Medição de Risco
6.
Mar Environ Res ; 193: 106298, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101202

RESUMO

To investigate the toxic mechanism of SiO2 nanoparticles (nSiO2) and polystyrene microplastics (mPS) on microalgae Nitzschia closterium f. minutissima, growth inhibition tests were carried out. The growth and biological responses of the algae exposed to nSiO2 (0.5, 1, 2, 5, 10, 30 mg L-1) and mPS (1, 5, 10, 30 and 75 mg L-1) were explored in f/2 media for 96 h. Both micro-/nano-particles (MNPs) inhibited the growth of N. closterium f. minutissima in a concentration- and time-dependent manner. The toxic effect of mPS on N. closterium f. minutissima is higher than that of nSiO2, because silicon is essential for diatoms to maintain cell wall integrity, and the addition of appropriate amounts of nSiO2 can be absorbed and used as a nutrient to promote diatom growth and protect the integrity of the siliceous shell to some extent. Both MNPs induce the production of excess oxidation and activate the cellular antioxidant defense system, leading to increased SOD and CAT activity as a means to resist oxidative damage to the cell, and eliminating excess ROS and maintaining normal cell morphology and metabolism. SEM is consistent with the results of MDA, showing that mPS with high concentrations attach to the surface of algal cells to produce heterogeneous aggregates and disrupt the cell wall and cell membrane, causing the cells to expand and rupture. This study contributes to the understanding of the size effect of MNPs on the growth of marine diatom.


Assuntos
Closterium , Diatomáceas , Poluentes Químicos da Água , Microplásticos , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Plásticos , Poluentes Químicos da Água/metabolismo
7.
Aquat Toxicol ; 266: 106810, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134819

RESUMO

There are few studies on the effects of nanoplastics on growth and hemolysin production of harmful algal bloom species at present. In this study, Karlodinium veneficum was exposed to different concentrations (0, 5, 25, 50, 75 mg/L) of polystyrene nanoplastics (PS-NPs, 100 nm) for 96 h. The effects of PS-NPs on growth of K. veneficum were investigated by measuring algal cell abundance, growth inhibition rate (IR), total protein (TP), malondialdehyde (MDA), glutathione reductase (GSH), superoxide dismutase (SOD), ATPase activity (Na+/K+ ATPase and Ca2+/Mg2+ ATPase). Scanning electron microscope and transmission electron microscope (SEM and TEM) images of microalgae with or without nanoplastics were also observed. The effects of PS-NPs on hemolysin production of K. veneficum were studied by measuring the changes of hemolytic toxin production of K. veneficum exposed to PS-NPs on 1, 3, 5 and 7 days. High concentrations (50 and 75 mg/L) of PS-NPs seriously affected the growth of K. veneficum and different degrees of damage to cell morphology and ultrastructure were found. Excessive free radicals and other oxidants were produced in the cells, which disrupted the intracellular redox balance state and caused oxidative damage to the cells, and the basic activities such as photosynthesis and energy metabolism were weakened. The athletic ability of K. veneficum was decreased, but the ability to produce hemolysin was enhanced. It was suggested that the presence of nanoplastics in seawater may strengthen the threat of harmful algal bloom species to aquatic ecosystems and human health.


Assuntos
Dinoflagelados , Microalgas , Poluentes Químicos da Água , Humanos , Poliestirenos/toxicidade , Microplásticos , Proteínas Hemolisinas/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Adenosina Trifosfatases
8.
Mar Environ Res ; 192: 106192, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783158

RESUMO

This study aimed to investigate the spatial and temporal distribution as well as the partitioning behavior of dissolved and particulate polycyclic aromatic hydrocarbons (PAHs) during the summer and autumn seasons of 2020. It was found that the average concentration of PAHs in surface seawater was significantly higher in autumn (58.16 ng L-1) than in summer (40.47 ng L-1) due to a large amount of input in autumn and more photodegradation and biodegradation affected by higher temperatures in summer. The spatial distribution indicated that the river had a significant dilution effect on PAHs in summer and became a significant input source in autumn. In addition, a large number of oil and gas development platforms were distributed throughout the Bohai Bay, and the discharge of production and domestic sewage contributed to the PAHs pollution level. As a semi-enclosed bay, the water exchange capacity of Bohai Bay was poor, leading to a greater accumulation of PAHs in the marine environment. The diagnostic ratios and PCA-MLR indicated that petroleum was the most important source of PAHs with a contribution of 45%, followed by fuel combustion (39%) such as coal and oil. Photooxidation in seawater resulted in a reduction of BaP/BeP, indicating that seasonal variations in photooxidation had a significant impact on the composition of PAHs (summer: 1.49, autumn: 2.96). The concentration of particulate PAHs was correlated with the concentration of dissolved PAHs and SPM, and the proportion of 3-rings (43.8%) and 4-rings (49.8%) PAHs was significantly higher on SPM. The distribution coefficients Log Kd and φspm-water showed a trend of increasing and then decreasing as the number of rings increased, with the 4-rings Pyr exhibiting the highest value. According to the ecological risk assessment, the ecological risk of total PAHs was low (RQNCs < 800, RQMECs < 1), but the ecological risk of individual PAHs and the carcinogenicity of high-ring PAHs could not be ignored (>96.5%). This study is significant for investigating the "sources and sinks" of PAHs in the complex marine environment by analyzing the partitioning behavior of PAHs in different phases.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Baías , Monitoramento Ambiental/métodos , Água , China , Carvão Mineral/análise , Medição de Risco , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 903: 166697, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660825

RESUMO

The drifting process of U. prolifera were simulated in a large-volume flowing water system with conditions similar to the field in the Yellow Sea. Biomass and chl-a content per unit of U. prolifera were monitored in the flowing water system by simulating nutrients and temperature variations of seawaters from starting place to terminus of U. prolifera in the South Yellow Sea. According to the variations of nutrients during the drifting process, the floating process can be divided into three stages. Differentially expressed genes and differential metabolites in the three stages of U. prolifera drifting process were identified, which are mainly related to glycometabolism, nitrogen metabolism, and selenium compound metabolism. The process from Stage I to Stage II are mainly related to the translation and molecular function of biological processes, and the main differential metabolites are primary metabolites, whereas, from Stage II to Stage III, secondary metabolites start to increase, indicating that U. prolifera resisted environmental stress by increasing lipids and producing secondary metabolites. It will provide some guidance for the comprehensive interpretation of the biological basis and ecological mechanisms of the large-scale U. prolifera green tides in the Yellow Sea.

10.
Mar Pollut Bull ; 187: 114587, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669299

RESUMO

P-nitrophenol (4-NP) is the most persistent and highly toxic species among nitrophenol. In this work, a novel fluorescent probe for the detection of 4-NP in aqueous environment was constructed by combining the carbon dots (CQDs) with excellent optical properties and the molecularly imprinted polymer (MIP) with favorable selectivity. The CQDs were synthesized by hydrothermal method using citric acid hydrate as carbon source and o-phenylenediamine as surface modifier, then the molecularly imprinted polymers coating on the CQDs (MIP@CQDs) were obtained by sol-gel imprinting process. The fluorescence quenching of MIP@CQDs is the results of internal filtration effect and dynamic quenching when they encounter with 4-NP. The probe is suitable for the quantitative detection of trace 4-NP in actual aqueous samples, such as tap water, wastewater and seawater, with satisfying recoveries from 95.1 % to 107.8 %, wide detection linear ranges between 0 and 144 µmol/L, low detection limit of 0.41 µmol/L and high selectivity. The detection results are consistent with those of the HPLC method. This work provides a simple, rapid and effective fluorescent detection method for trace 4-NP in aqueous environment.


Assuntos
Impressão Molecular , Pontos Quânticos , Impressão Molecular/métodos , Carbono , Nitrofenóis , Água , Limite de Detecção
11.
Sci Total Environ ; 866: 161267, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36608820

RESUMO

Microplastic contaminations threaten the entire marine ecosystem and cause severe ecological stress. This study explored the energy metabolism change of Karenia mikimotoi under exposure to nanoplastics (NPs) and microplastics (MPs) (65 nm, 100 nm, and 1 µm polystyrene (PS), and 100 nm polymethyl methacrylate (PMMA)) at a concentration of 10 mg L-1. Membrane potential, esterase activity, polysaccharide content, and ATPase activity were detected to assess the energy metabolism of K. mikimotoi under MPs/NPs exposure. Transcriptome and metabolomic analyses were used to investigate the intrinsic mechanisms of energy metabolism changes. Smaller PS particles caused greater damage to the cell membrane potential, increased the polysaccharide content, and resulted in a heavier weakening of the ATPase enzymatic activity in K. mikimotoi cells, suggesting that smaller-sized PS had more influence on esterase activity and energy metabolism than the bigger-sized PS. The results evidenced that energy metabolism relates to the size and type of MPs/NPs, and nano-scale plastic particles could induce greater metabolic changes.


Assuntos
Dinoflagelados , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos , Ecossistema , Poliestirenos , Adenosina Trifosfatases , Metabolismo Energético , Esterases , Poluentes Químicos da Água/toxicidade
12.
J Agric Food Chem ; 71(2): 1046-1055, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36621942

RESUMO

Chlorpyrifos, as a moderate toxic organophosphorus pesticide, is prone to lingering in the environment and cannot be monitored easily. In this study, a magnetic, microporous, molecularly imprinted polymer was synthesized by using the reversible addition-fragmentation chain transfer polymerization method. The synthesized materials were properly characterized in terms of morphology, selectivity, and sorption capacity and used as sorbents for magnetic solid phase extraction for the selective determination of chlorpyrifos in apple samples. Results showed that the magnetic microporous molecularly imprinted materials were rough and porous spheres at an average size of 5 nm. The materials were highly selective toward chlorpyrifos with a superior sorption capacity of 167.99 mg·g-1 and were resistant to the interference of competitive pollutants. After optimization, the recoveries of chlorpyrifos reached 96.2-106.5%, and the detection limit was 0.028 µg·kg-1 by HPLC. Based on these analytical validation results, the developed method could be effective at determining chlorpyrifos in apples.


Assuntos
Clorpirifos , Malus , Impressão Molecular , Praguicidas , Polímeros Molecularmente Impressos , Impressão Molecular/métodos , Polimerização , Compostos Organofosforados , Polímeros/química , Cromatografia Líquida de Alta Pressão , Adsorção , Fenômenos Magnéticos , Extração em Fase Sólida/métodos
13.
Sci Total Environ ; 857(Pt 3): 159614, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36283517

RESUMO

The acute toxic effects of pristine and aged polystyrene (P-PS and A-PS) and their leaching solutions (L-PS) on microalgae Skeletonema costatum were investigated by measuring algal density and growth inhibition rate (IR), chlorophyll concentration and photosynthetic efficiency (Fv/Fm) over 96 h. Total protein (TP), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) were measured to analyze the oxidative damage to microalgae by microplastics and their leachates. Hydrodynamic diameter of microplastics in seawater, FITR and SEM images were used to study the changes of polystyrene during aging. The interaction of algae cell with microplastics and the cellular ultrastructure changes of cells were analyzed combined with electron microscopy for a comprehensive and systematic understanding on the mechanisms of microplastic toxicity to microalgae. Both high concentration and small size of PS had significant inhibitory effect on the growth of microalgae, and the inhibitory effect was greater with increasing exposure time. The inhibition effect of aged microplastics was more obvious, which was speculated to be caused by the synergistic effect of aged PS itself and leaching solution. The negative effect of leaching solution on microalgae was due to the release of some additives during the aging process. The content of MDA reached the highest value of 54.41 nmol/mgprot in 1.0 µm 50 mg/L A-PS treatment group, and A-PS were found to be more prone to heterogeneous aggregation with algae cells by SEM.


Assuntos
Diatomáceas , Microalgas , Poluentes Químicos da Água , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Microplásticos , Plásticos/metabolismo , Poluentes Químicos da Água/metabolismo
14.
Sci Total Environ ; 857(Pt 3): 159682, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36302405

RESUMO

The Bohai Bay as a typical semi-enclosed bay in northern China with poor water exchange capacity and significant coastal urbanization, is greatly influenced by land-based inputs and human activities. As a class of pseudo-persistent organic pollutants, the spatial and temporal distribution of Pharmaceuticals and Personal Care Products (PPCPs) is particularly important to the ecological environment, and it will be imperfect to assess the ecological risk of PPCPs for the lack of systematic investigation of their distribution in different season. 14 typical PPCPs were selected to analyze the spatial and temporal distribution in the Bohai Bay by combining online solid-phase extraction (SPE) and HPLC-MS/MS techniques in this study, and their ecological risks to aquatic organisms were assessed by risk quotients (RQs) and concentration addition (CA) model. It was found that PPCPs widely presented in the Bohai Bay with significant differences of spatial and seasonal distribution. The concentrations of ∑PPCPs were higher in autumn than in summer. The distribution of individual pollutants also showed significant seasonal differences. The high values were mainly distributed in estuaries and near-shore outfalls. Mariculture activities in the northern part of the Bohai Bay made a greater contribution to the input of PPCPs. Caffeine, florfenicol, enrofloxacin and norfloxacin were the main pollutants in the Bohai Bay, with detection frequencies exceeding 80 %. The ecological risk of PPCPs to algae was significantly higher than that to invertebrates and fish. CA model indicated that the potential mixture risk of total PPCPs was not negligible, with 34 % and 88 % of stations having mixture risk in summer and autumn, respectively. The temporary stagnation of productive life caused by Covid-19 weakened the input of PPCPs to the Bohai Bay, reducing the cumulative effects of the pollutants. This study was the first full-coverage investigation of PPCPs in the Bohai Bay for different seasons, providing an important basis for the ecological risk assessment and pollution prevention of PPCPs in the bay.


Assuntos
COVID-19 , Cosméticos , Poluentes Químicos da Água , Animais , Humanos , Estações do Ano , Monitoramento Ambiental/métodos , Baías , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem , Cosméticos/análise , Medição de Risco , Preparações Farmacêuticas , China
15.
Mikrochim Acta ; 190(1): 8, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472666

RESUMO

A magnetic molecularly imprinted probe (MMIP@QD) was synthesized by reverse microemulsion method using CdTe QDs, Fe3O4, and molecularly imprinted polymer as the fluorophore, magnetic carrier, and recognition sites, respectively. The nanoparticle was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and vibrating sample magnetometry (VSM). In the optimal experimental condition, fluorescent emission intensity (measured at excitation wavelengths of 350 nm) was quenched linearly with increasing malachite green (MG) concentration from 0.8 to 28.0 µM with LOD of 0.67 µM. Simultaneously, it was observed that the maximum absorption wavelength was blue shifted gradually with the increase of MG concentration. The inner filter effect, static quenching, and band gap transition were interpreted as the mechanisms of fluorescence quenching and wavelength shift. Thermodynamic studies indicated that the quenching reaction proceeded spontaneously. The developed sensor was applied to detect MG in seawater samples. Satisfactory recoveries of MG in spiked seawater ranged from 83.6 to 122.1% with RSD < 1.8%.


Assuntos
Compostos de Cádmio , Nanopartículas de Magnetita , Pontos Quânticos , Espectroscopia de Infravermelho com Transformada de Fourier , Telúrio
16.
Aquat Toxicol ; 252: 106309, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156355

RESUMO

To investigate the toxic mechanism of SiO2 nanoparticles (nSiO2) and polystyrene microplastics (mPS) on microalgae Heterosigma akashiwo, growth inhibition tests were carried out. The growth and biological responses of the algae exposed to nSiO2 (0.5, 1, 1.5, 2, 5, 10 and 30 mg L-1) and mPS (1, 2, 5, 10, 30 and 75 mg L-1) were explored in f/2 media for 96 h. It was found that the hydrodynamic diameter of the particles seems to be one of the more important factors to influence the algae. nSiO2 and mPS with similar hydrodynamic diameters have the similar toxic mechanism on H. akashiwo, and the effects were dose- and time-dependent. High concentrations of micro-/nano-particles (MNPs) could inhibit the growth of algal cells, however, low concentrations of MNPs did not restrict or even promoted the growth of algae, known as "Hormesis" phenomenon. The 96 h-EC20 values of nSiO2 and mPS on H. akashiwo were 2.69 and 10.07 mg L-1, respectively, and chlorophyll fluorescence parameters indicated that the microalgal photosynthetic system were inhibited. The hydrophilic surface of nSiO2 increased the likelihood of nSiO2 binding to the hydrophilic functional group of microalgae, which may account for the slightly stronger toxic effect of nSiO2 than mPS. The algae continued to produce reactive oxygen species (ROS) under stress conditions. Total protein (TP) levels reduced, and superoxide dismutase (SOD) and catalase (CAT) levels increased to maintain ROS levels in the cells. The decrease in adenosine triphosphate (ATPase) indicated an impact on cellular energy metabolism. Cell membrane damage, cytoplasm and organelle efflux under stress were confirmed by scanning and transmission electron microscopy (SEM and TEM) images. This study contributes to the understanding of the size effect of MNPs on the growth of marine microalgae.


Assuntos
Dinoflagelados , Microalgas , Estramenópilas , Poluentes Químicos da Água , Microplásticos , Catalase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plásticos , Hidrodinâmica , Poliestirenos/metabolismo , Dióxido de Silício , Poluentes Químicos da Água/toxicidade , Estramenópilas/metabolismo , Dinoflagelados/metabolismo , Superóxido Dismutase/metabolismo , Clorofila/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo
17.
Mar Pollut Bull ; 184: 114123, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126484

RESUMO

Parameters regarding water quality, biology, marine disasters, and anthropogenic factors were collected and analyzed from 2020 to 2021 to evaluate the marine biodiversity of Tianjin's near-shore sea area accurately. A total of 29 indicators obtained from the surveys were selected to form the biodiversity evaluation system. The Pressure-State-Response (PSR) framework model combined with the ecological environment characteristics was used as the assessment method. The analytic hierarchy process (AHP) determined the weights of each indicator. The results showed that the main influencing factors of the water environment for species diversity monitoring were dissolved inorganic nitrogen (DIN) and chemical oxygen demand (COD), and all water quality monitoring items were relatively stable without obvious pollution. The biomass of biological species in the near-shore sea area of Tianjin was relatively low, the species distribution was uneven, and the structure and function of the ecosystem need to be improved since environmental problems still existed.


Assuntos
Ecossistema , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Biodiversidade , Qualidade da Água , Nitrogênio , China
18.
Polymers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35567008

RESUMO

In this study, a novel sample pretreatment strategy of solid-phase microextraction using graphene oxide molecularly imprinted polymers as adsorbents coupled with high-performance liquid chromatography was developed to detect norfloxacin in the marine environment. As a carrier, the imprinted polymers were synthesized by precipitation polymerization with graphene oxide. Compared with graphene oxide non-imprinted polymers, the graphene oxide molecularly imprinted polymers exhibited higher adsorption capacity towards norfloxacin. The synthesized polymeric materials were packed into a molecularly imprinted solid-phase microextraction cartridge, and critical parameters affecting the extraction process were optimized. Under the optimized molecular imprinted solid-phase microextraction condition, the proposed method was applied to the analysis of norfloxacin for seawater and fish with satisfactory recovery (90.1-102.7%) and low relative standard deviation (2.06-5.29%, n = 3). The limit of detection was 0.15 µg L-1 and 0.10 µg kg-1 for seawater and fish, respectively. The study revealed that the proposed molecularly imprinted solid-phase microextraction represents an attractive sample pretreatment strategy for the analysis of norfloxacin in the marine environment.

19.
Chemosphere ; 300: 134378, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398068

RESUMO

The Bohai Sea is one of the most polluted hotspots by per- and Polyfluoroalkyl substances (PFASs) in the world and studies on the vertical distribution of PFASs at different water layers and phase partitioning between water and suspended particulate matter (SPM) were still limited. 23 legacy and emerging PFASs were investigated in seawater and SPM throughout the Bay in this study. The average concentrations of ∑PFASs in seawater were 48.21 ng/L and 52.71 ng/L during the periods of wet and normal water, respectively. In general, the concentrations of ∑PFASs in surface water were higher than that in deep water. Legacy PFASs in seawater were dominated by PFOA and short-chain PFASs, while the emerging alternative HFPO-DA was detected in the whole water layer of the Bohai Bay with an average concentration of 1.09 ng/L. The spatial distribution showed that ∑PFASs were higher nearshore than inside the bay and higher in the south than that in the north of the bay. The average concentration of ∑PFASs in SPM was 9.02 ng/g. Long-chain PFASs and the emerging alternative 6:2 Cl-PFESA accounted for the major contaminants. The partition coefficients log Kd and φspm-w showed a linear positive correlation with carbon chain length. Preliminary risk assessments revealed that the ecological risk of common PFASs in the Bohai Bay was low, while PFOA was at moderate risk. The principal component analysis demonstrated that the production process of traditional fluorochemical factories, fire-fighting and emerging electroplating industries were the main sources of PFASs. This was the first comprehensive survey of emerging PFASs in different water depths and in SPM of the Bohai Bay during different seasons, which provided important scientific data for studying the ecological risks and pollution prevention of PFASs.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Baías , China , Monitoramento Ambiental , Fluorocarbonos/análise , Material Particulado/análise , Medição de Risco , Água/análise , Poluentes Químicos da Água/análise
20.
Mikrochim Acta ; 189(3): 95, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142925

RESUMO

Molecularly imprinted polymers were synthesized by gel-sol method with multi-walled carbon nanotubes as support and enrofloxacin as a template and further modified on the surface of glassy carbon electrode to construct a molecularly imprinted electrochemical sensor. The performance of the imprinted electrochemical sensor was thoroughly investigated by using cyclic voltammetry and differential pulse voltammetry. The influence of imprinted polymers amount, electrolyte pH, and incubation time on the sensor performance was investigated for the detection of enrofloxacin. Under the optimal experimental conditions in a three-electrode system with the modified electrode as the working electrode the differential pulse voltammetry response current of the sensor had a good linear relationship at 0.2 V (vs. saturated calomel reference electrode) with the enrofloxacin concentration within 2.8 pM-28 µM and the limit of detection of the method was 0.9 pM. The competitive interference experiment showed that the imprinted electrochemical sensor could selectively recognize enrofloxacin. The method was applied to analyze spiked natural seawater, fish, and shrimp samples. The recovery was 96.4%-102%, and RSD was less than 4.3% (n = 3), indicating that the proposed imprinted electrochemical sensor was suitable for the determination of trace enrofloxacin in marine environment samples.


Assuntos
Técnicas Eletroquímicas , Enrofloxacina/análise , Polímeros Molecularmente Impressos/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...